Fish-eating snails stun their prey with insulin
Study finds what could be the first ever use of insulin in animal venom
According to a study published in the Proceedings of the National Academy of Sciences, the two fish-hunting cone snails that have evolved this unique ability are Conus geographus and Conus tulipa. These snails use a specially evolved fish insulin to induce hypoglycemic shock in their prey. Instead of pursuing their meals, they wait until one swims by and then flood the surrounding waters with the insulin. That causes a suppression of glucose to the fish's vital organs (like the brain), rendering the snails' targets lethargic and easy to catch.
Weaponized insulin helps the snails draw in their prey
Researchers at the University of Utah were using DNA and protein sequencing to examine the components of snail venom, in the hopes that it might have pharmaceutical potential. While doing that, it was discovered that one compound wasn't a neurotoxin at all — it was insulin. Not only was it found in abundance, it "looked considerably more like fish insulin than endogenous snail insulin." The team synthesized the hormone and tested it on fish finding that the insulin lowered glucose levels in the blood and caused hypoactivity after being absorbed through the gills of the fish.
Cone snails can be grouped into fish-, mollusc-, and worm-hunting varieties, and the team at the University of Utah studied several representatives of each. Early research into these other, non fish-hunting types shows that they produce insulin specific to their prey — which suggests they produce a weaponized insulin as well.
Additionally, insulin has never been described as part of an animal venom, according to Safavi. Inducing hypoglycemic shock in prey has not been reported for any other venomous animal.
That said, there are other predators that have venom components that target the metabolism of their prey, like the Heloderma suspectum species of gila monster. But as Safavi sees it, the importance of the study is that it shows how evolution can turn good compounds into bad ones. It's another weapon in a long line of clever techniques used by venomous animals when it comes to capturing prey.
Additional reporting by Arielle Duhaime-Ross
Comments
Post a Comment